论文标题

协方差表示,$ l^p $-poincaré不平等,Stein的内核和高维clts

Covariance Representations, $L^p$-Poincaré Inequalities, Stein's Kernels and High Dimensional CLTs

论文作者

Arras, Benjamin, Houdré, Christian

论文摘要

我们探索协方差表示,bismut型公式和Stein方法之间的联系。首先,使用封闭对称形式的理论,我们得出了$ \ mathbb {r}^d $,$ d \ geq 1 $的几种知名概率度量的协方差表示。当有强大的梯度范围时,这些协方差表示立即导致$ l^p $ - $ l^q $协方差估算,所有$ p \ in(1, +\ infty)$和$ q = p/(p/(p-1)$。然后,我们根据协方差表示,对标准高斯概率措施进行了众所周知的$ l^p $-poincaré不平等($ p \ geq 2 $),以$ \ mathbb {r}^d $上的标准概率度量。此外,对于非成熟的对称$α$稳定案例,$α\ in(1,2)$,我们获得了$ l^p $-poincaré和pseudo-poincaré不平等,以$ p \ in(1,α)$的$ p \ in(1,α)$,通过对各种bismut-type type typeposals的详细分析。最后,使用封闭形式技术对Stein的内核的构建,当限制高斯概率度量是各向异性时,我们以$ 1 $ - 沃瑟氏级距离获得定量的高维CLT。对参数的依赖性完全是显式的,并且收敛速率很清晰。

We explore connections between covariance representations, Bismut-type formulas and Stein's method. First, using the theory of closed symmetric forms, we derive covariance representations for several well-known probability measures on $\mathbb{R}^d$, $d \geq 1$. When strong gradient bounds are available, these covariance representations immediately lead to $L^p$-$L^q$ covariance estimates, for all $p \in (1, +\infty)$ and $q = p/(p-1)$. Then, we revisit the well-known $L^p$-Poincaré inequalities ($p \geq 2$) for the standard Gaussian probability measure on $\mathbb{R}^d$ based on a covariance representation. Moreover, for the nondegenerate symmetric $α$-stable case, $α\in (1,2)$, we obtain $L^p$-Poincaré and pseudo-Poincaré inequalities, for $p \in (1, α)$, via a detailed analysis of the various Bismut-type formulas at our disposal. Finally, using the construction of Stein's kernels by closed forms techniques, we obtain quantitative high-dimensional CLTs in $1$-Wasserstein distance when the limiting Gaussian probability measure is anisotropic. The dependence on the parameters is completely explicit and the rates of convergence are sharp.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源