论文标题

合成的五波混合在集成的微腔中,以进行可见的纠缠产生

Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation

论文作者

Wang, Jia-Qi, Yang, Yuan-Hao, Li, Ming, Zhou, Hai-Qi, Xu, Xin-Biao, Zhang, Ji-Zhe, Dong, Chun-Hua, Guo, Guang-Can, Zou, Chang-Ling

论文摘要

非线性光学器件过程位于光子学的核心和量子光学方面,它们在光源和信息处理中必不可少的作用。在过去的几十年中,已经对三波和四波混合($χ^{(2)} $和$χ^{(3)} $)效应进行了广泛的研究,尤其是在微观/纳米结构中,光子 - 光子相互作用强度得到了很大增强。到目前为止,由于$χ^{(3)} $以外的高阶非线性,由于其内在的非线性易感性较弱,即使在高质量的微腔内,也很少在介电材料中研究过介电材料。在这里,首次合成了有效的五波混合过程($χ^{(4)} $),通过将$χ^{(2)} $和$χ^{(3)} $过程合成。合成$χ^{(4)} $的相干性通过生成时间能量纠缠的可见telecom光子对来验证,这仅需要在电信波段上进行一个驱动激光器。合成过程中的光子对生成速率在固有的五波混合后显示出超过500美元的增强因子。我们的工作证明了通过介观量表而不是物质工程的光子结构工程的非线性合成的通用方法,因此为实现高阶光学非线性和探索新型功能光子设备开辟了新的途径。

Nonlinear optics processes lie at the heart of photonics and quantum optics for their indispensable role in light sources and information processing. During the past decades, the three- and four-wave mixing ($χ^{(2)}$ and $χ^{(3)}$) effects have been extensively studied, especially in the micro-/nano-structures by which the photon-photon interaction strength is greatly enhanced. So far, the high-order nonlinearity beyond the $χ^{(3)}$ has rarely been studied in dielectric materials due to their weak intrinsic nonlinear susceptibility, even in high-quality microcavities. Here, an effective five-wave mixing process ($χ^{(4)}$) is synthesized for the first time, by incorporating $χ^{(2)}$ and $χ^{(3)}$ processes in a single microcavity. The coherence of the synthetic $χ^{(4)}$ is verified by generating time-energy entangled visible-telecom photon-pairs, which requires only one drive laser at the telecom waveband. The photon pair generation rate from the synthetic process shows an enhancement factor over $500$ times upon intrinsic five-wave mixing. Our work demonstrates a universal approach of nonlinear synthesis via photonic structure engineering at the mesoscopic scale rather than material engineering, and thus opens a new avenue for realizing high-order optical nonlinearities and exploring novel functional photonic devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源