论文标题
在资源受限的无线网络控制系统中,一种增强学习方法的增强学习方法
A Reinforcement Learning Approach to Sensing Design in Resource-Constrained Wireless Networked Control Systems
论文作者
论文摘要
在本文中,我们考虑了一个智能传感器(代理)的无线网络,该网络可以监视动态过程,并将测量结果发送到执行全球监控和决策的基站。智能传感器配备了传感和计算,并且可以在传输前发送原始测量或对其进行处理。受限的代理资源提出了基本的潜伏 - 准确性权衡。一方面,原始测量值不准确,但生产速度很快。另一方面,对资源受限平台上的数据处理以不可忽略的计算延迟为代价生成准确的测量。此外,如果也压缩了处理的数据,则无线通信引起的延迟可能更高。因此,决定网络中的传感器应何时何地传输原始测量或利用耗时的本地处理是一个挑战。为了解决这个设计问题,我们提出了一种增强学习方法,以学习有效的政策,该政策会动态决定何时在每个传感器上处理测量。我们提出的方法的有效性通过数值模拟,并通过案例研究对智能感应进行了验证。
In this paper, we consider a wireless network of smart sensors (agents) that monitor a dynamical process and send measurements to a base station that performs global monitoring and decision-making. Smart sensors are equipped with both sensing and computation, and can either send raw measurements or process them prior to transmission. Constrained agent resources raise a fundamental latency-accuracy trade-off. On the one hand, raw measurements are inaccurate but fast to produce. On the other hand, data processing on resource-constrained platforms generates accurate measurements at the cost of non-negligible computation latency. Further, if processed data are also compressed, latency caused by wireless communication might be higher for raw measurements. Hence, it is challenging to decide when and where sensors in the network should transmit raw measurements or leverage time-consuming local processing. To tackle this design problem, we propose a Reinforcement Learning approach to learn an efficient policy that dynamically decides when measurements are to be processed at each sensor. Effectiveness of our proposed approach is validated through a numerical simulation with case study on smart sensing motivated by the Internet of Drones.