论文标题
一种构造和分析视觉分析知识出处的理论方法
A Theoretical Approach for Structuring and Analysing Knowledge Provenance for Visual Analytics
论文作者
论文摘要
视觉分析(VA)的主要目标是实现用户指导的知识生成。理论VA致力于解释VA工具的不同方面如何通过用户交互性带来新的见解,这些见解本身可以通过跟踪方法来捕获以进行复制或评估。但是,在很大程度上忽略了自动捕获用户的思维过程的过程,例如意图和洞察力,并将其与用户的交互事件相关联。同样,两种形式的交互性捕获通常是模棱两可的和混合的:时间方面,指示事件的序列和暂时的方面,这将工作流程解释为状态空间内状态的序列。在这项工作中,我们提出了视觉分析知识图(VAKG),这是一个概念框架,它通过新颖的知识建模形式化了VA建模理论来实践。通过从VA工具中提取这种模型,VAKG构建了一个四向时间知识图,该图描述了用户行为及其相关知识增益过程。这些知识图可以在用户分析会议期间手动或自动填充,然后可以使用图形分析方法对其进行分析。通过建模和收集图表和视觉文本挖掘工作流程来证明VAKG,可以从知识图中提取比较用户满意度,工具效率和整体工作流缺点。
The primary goal of Visual Analytics (VA) is to enable user-guided knowledge generation. Theoretical VA works to explain how the different aspects of a VA tool bring forth new insights through user interactivity, which itself can be captured through tracking methods for reproduction or evaluation. However, the process of automatically capturing the user's thought process, such as intent and insights, and associating it with user's interaction events are largely ignored. Also, two forms of interactivity capture are typically ambiguous and intermixed: the temporal aspect, which indicates sequences of events, and the atemporal aspect, which explains the workflow as sequences of states within a state-space. In this work, we propose Visual Analytics Knowledge Graph (VAKG), a conceptual framework that brings VA modeling theory to practice through a novel Set-Theory formalization of knowledge modeling. By extracting such a model from a VA tool, VAKG structures a 4-way temporal knowledge graph that describes user behavior and its associated knowledge gain process. Such knowledge graphs can be populated manually or automatically during user analysis sessions, which can then be analyzed using graph analysis methods. VAKG is demonstrated by modeling and collecting Tableau and visual text-mining workflows, where comparative user satisfaction, tool efficacy, and overall workflow shortcomings can be extracted from the knowledge graph.