论文标题

多尺度媒体中的非本地传输方程。建模,拆除和离散化

Nonlocal transport equations in multiscale media. Modeling, dememorization, and discretizations

论文作者

Efendiev, Yalchin, Leung, Wing Tat, Li, Wenyuan, Pun, Sai-Mang, Vabishchevich, Petr N.

论文摘要

在本文中,我们考虑了具有内存效应的一类对流扩散方程。这些方程是由于异质介质中线性传输方程的均质化或在许多应用中起重要作用而产生的。首先,我们为这些方程式提出了一种拆卸技术。我们表明,具有内存效应的对流扩散方程可以写为标准对流扩散反应方程的系统。这允许删除内存项并简化计算。我们考虑将不包含内存项的拆卸方程和微尺度方程之间的关系。我们注意到,隔离的方程式与微尺度方程不同,构成了宏观模型。接下来,我们考虑隐式和部分显式方法。引入了后者,以解决具有高对比度特性的多尺度介质的问题。由于对比度很高,显式方法是限制性的,需要很小的时间步骤(作为对比度的比例)。我们表明,通过适当地分解空间,我们只能隐含地对待几个自由度,并明确地对待其余的自由程度。我们提出了稳定分析。给出了数值结果,以证实我们对应用于降级的方程系统的部分显式方案的理论发现。

In this paper, we consider a class of convection-diffusion equations with memory effects. These equations arise as a result of homogenization or upscaling of linear transport equations in heterogeneous media and play an important role in many applications. First, we present a dememorization technique for these equations. We show that the convection-diffusion equations with memory effects can be written as a system of standard convection-diffusion-reaction equations. This allows removing the memory term and simplifying the computations. We consider a relation between dememorized equations and micro-scale equations, which do not contain memory terms. We note that dememorized equations differ from micro-scale equations and constitute a macroscopic model. Next, we consider both implicit and partially explicit methods. The latter is introduced for problems in multiscale media with high-contrast properties. Because of high contrast, explicit methods are restrictive and require time steps that are very small (scales as the inverse of the contrast). We show that, by appropriately decomposing the space, we can treat only a few degrees of freedom implicitly and the remaining degrees of freedom explicitly. We present a stability analysis. Numerical results are presented that confirm our theoretical findings of partially explicit schemes applied to dememorized systems of equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源