论文标题
LDP-IDS:无限数据流的当地差异隐私
LDP-IDS: Local Differential Privacy for Infinite Data Streams
论文作者
论文摘要
流数据收集对于各种物联网和基于移动设备的系统中的实时数据分析至关重要,但是,这可能会揭示最终用户的隐私。当地差异隐私(LDP)是保护隐私数据收集和分析的有前途解决方案。但是,现有的关于流的最不发达国家研究仅适用于有限的流或保护不足。本文通过提出了一种新颖的$ W $ - 事件的LDP范式来调查此问题,以为用户最终的无限流提供实用的隐私保证,并在集中式差异隐私(CDP)中调整流行的预算部门框架。通过为LDP构建统一的误差分析,我们首先为LDP-ID开发了两种基于ADATPIVE预算部的LDP方法,可以通过利用流中的非确定性稀疏性来增强数据实用性。除此之外,我们进一步提出了一个新型的人口划分框架,该框架不仅可以避免自然党对预算划分的高灵敏度,而且还需要较少的沟通。基于该框架,我们还提供了两种自适应种群分裂方法,用于使用理论分析的自由开展ID。我们对合成和实际数据集进行了广泛的实验,以评估我们提出的框架和方法的有效性和效率。实验结果表明,尽管自适应预算划分方法具有有效性,但提议的人口划分框架和方法可以进一步实现更高的有效性和效率。
Streaming data collection is essential to real-time data analytics in various IoTs and mobile device-based systems, which, however, may expose end users' privacy. Local differential privacy (LDP) is a promising solution to privacy-preserving data collection and analysis. However, existing few LDP studies over streams are either applicable to finite streams only or suffering from insufficient protection. This paper investigates this problem by proposing LDP-IDS, a novel $w$-event LDP paradigm to provide practical privacy guarantee for infinite streams at users end, and adapting the popular budget division framework in centralized differential privacy (CDP). By constructing a unified error analysi for LDP, we first develop two adatpive budget division-based LDP methods for LDP-IDS that can enhance data utility via leveraging the non-deterministic sparsity in streams. Beyond that, we further propose a novel population division framework that can not only avoid the high sensitivity of LDP noise to budget division but also require significantly less communication. Based on the framework, we also present two adaptive population division methods for LDP-IDS with theoretical analysis. We conduct extensive experiments on synthetic and real-world datasets to evaluate the effectiveness and efficiency pf our proposed frameworks and methods. Experimental results demonstrate that, despite the effectiveness of the adaptive budget division methods, the proposed population division framework and methods can further achieve much higher effectiveness and efficiency.