论文标题

使用优化和机器学习对双异性跨表面的逆设计和实验验证

Inverse Design and Experimental Verification of a Bianisotropic Metasurface Using Optimization and Machine Learning

论文作者

Pearson, Stewart, Naseri, Parinaz, Hum, Sean V.

论文摘要

电磁元信息由于其低调和有利的应用而引起了人们的重大兴趣。实际上,许多元图设计从辐射远场的一组约束开始,例如主梁方向(S)和侧瓣水平,并以表面的不均匀物理结构结尾。这个问题非常具有挑战性,因为只有在散射场上放置约束时,所需的切向场变换并不完全知道。因此,无法分析所需的表面特性。此外,所需的表面特性向物理单位细胞的翻译可能是耗时且困难的,因为它通常是大型解决方案空间中的一对多映射。在这里,我们将逆设计过程分为两个步骤:宏观和微观设计步骤。在前者中,我们使用迭代优化过程来找到辐射符合指定约束的远场图案的表面特性。这个迭代过程利用了非辐射电流,以确保被动和无损设计。在微观步骤中,使用机器学习替代模型实现这些优化的表面特性。该端到端合成过程的有效性通过横梁拆分原型的测量结果证明。

Electromagnetic metasurfaces have attracted significant interest recently due to their low profile and advantageous applications. Practically, many metasurface designs start with a set of constraints for the radiated far-field, such as main-beam direction(s) and side lobe levels, and end with a non-uniform physical structure for the surface. This problem is quite challenging, since the required tangential field transformations are not completely known when only constraints are placed on the scattered fields. Hence, the required surface properties cannot be solved for analytically. Moreover, the translation of the desired surface properties to the physical unit cells can be time-consuming and difficult, as it is often a one-to-many mapping in a large solution space. Here, we divide the inverse design process into two steps: a macroscopic and microscopic design step. In the former, we use an iterative optimization process to find the surface properties that radiate a far-field pattern that complies with specified constraints. This iterative process exploits non-radiating currents to ensure a passive and lossless design. In the microscopic step, these optimized surface properties are realized with physical unit cells using machine learning surrogate models. The effectiveness of this end-to-end synthesis process is demonstrated through measurement results of a beam-splitting prototype.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源