论文标题

Qudit系统的量子近似优化算法

Quantum approximate optimization algorithm for qudit systems

论文作者

Deller, Yannick, Schmitt, Sebastian, Lewenstein, Maciej, Lenk, Steve, Federer, Marika, Jendrzejewski, Fred, Hauke, Philipp, Kasper, Valentin

论文摘要

量子计算平台的频繁起点是两态量子系统,即Qubits。但是,在整数优化问题的背景下,与调度优化和操作研究有关,使用具有两个以上状态的量子系统通常是更高的资源效率。在这里,我们讨论了Qudit系统的量子近似优化算法(QAOA)。我们说明如何使用QAOA来制定各种整数优化问题,例如图形着色问题或电动汽车(EV)充电优化。此外,我们对约束的实施发表评论,并描述了三种方法,将这些方法包括在QAOA的量子电路中,这是通过对成本汉密尔顿的罚款贡献,使用Ancilla Qubits的条件门以及动态解耦策略。最后,作为基于QUDIT的QAOA的展示,我们提出了映射到最大$ K $ graph着色问题的充电优化问题的数值结果。我们的工作说明了Qudit系统在解决整数优化问题方面的灵活性。

A frequent starting point of quantum computation platforms are two-state quantum systems, i.e., qubits. However, in the context of integer optimization problems, relevant to scheduling optimization and operations research, it is often more resource-efficient to employ quantum systems with more than two basis states, so-called qudits. Here, we discuss the quantum approximate optimization algorithm (QAOA) for qudit systems. We illustrate how the QAOA can be used to formulate a variety of integer optimization problems such as graph coloring problems or electric vehicle (EV) charging optimization. In addition, we comment on the implementation of constraints and describe three methods to include these into a quantum circuit of a QAOA by penalty contributions to the cost Hamiltonian, conditional gates using ancilla qubits, and a dynamical decoupling strategy. Finally, as a showcase of qudit-based QAOA, we present numerical results for a charging optimization problem mapped onto a max-$k$-graph coloring problem. Our work illustrates the flexibility of qudit systems to solve integer optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源