论文标题
在1D PEIERLS系统中电荷密度波的固有固定和形状上
On the intrinsic pinning and shape of charge-density waves in 1D Peierls systems
论文作者
论文摘要
在PEIERL的标准扰动方法中,通常假定电荷密度波具有弱振幅的余弦形状。在非线性物理学中,我们知道波可以变形。电子武器模型的非线性在PEIERLS系统的物理特性中有什么影响?我们详细研究了一个非线性离散模型,该模型由Brazovskii,Dzyaloshinskii和Krichever提出。首先,我们回想起其在可集成点上的确切分析解决方案。这是一个带有连续的包膜的cNoidal波,在Fröhlich的论点之后,它可能以无能量成本滑过晶格的潜力。其次,我们以数值方式显示,可以进行一致性的术语修改了一些重要的物理属性。包膜功能可能会变得不连续:电子形成更强的化学键,即局部二聚体或低聚物。我们表明,当模型不再可以集成时,就会发生从滑动相到绝缘固定相的Aubry过渡。
Within the standard perturbative approach of Peierls, a charge-density wave is usually assumed to have a cosine shape of weak amplitude. In nonlinear physics, we know that waves can be deformed. What are the effects of the nonlinearities of the electron-lattice models in the physical properties of Peierls systems? We study in details a nonlinear discrete model, introduced by Brazovskii, Dzyaloshinskii and Krichever. First, we recall its exact analytical solution at integrable points. It is a cnoidal wave, with a continuous envelope, which may slide over the lattice potential at no energy cost, following Fröhlich's argument. Second, we show numerically that integrability-breaking terms modify some important physical properties. The envelope function may become discontinuous: electrons form stronger chemical bonds which are local dimers or oligomers. We show that an Aubry transition from the sliding phase to an insulating pinned phase occurs when the model is no longer integrable.