论文标题
球形$ s $ distance $ t $ designs的内部产品的合理性,用于$ t \ geq 2S-2 $,$ s \ geq 3 $
Rationality of the inner products of spherical $s$-distance $t$-designs for $t \geq 2s-2$, $s \geq 3$
论文作者
论文摘要
我们证明,带有$ t \ geq 2S-2 $(delsarte代码)和$ s \ geq 3 $的球形$ s $ distance $ t $ t $ designs的内部产品是合理的,唯一的例外是iCosahedron。在其他配方中,我们证明所有尖锐的构型都具有合理的内部产品,并且所有获得Levenshtein结合的球形代码都具有合理的内部产品,除了二十面体外。
We prove that the inner products of spherical $s$-distance $t$-designs with $t \geq 2s-2$ (Delsarte codes) and $s \geq 3$ are rational with the only exception being the icosahedron. In other formulations, we prove that all sharp configurations have rational inner products and all spherical codes which attain the Levenshtein bound, have rational inner products, except for the icosahedron.