论文标题
卡坦运动组和轨道积分
Cartan Motion Group and Orbital Integrals
论文作者
论文摘要
在简短的说明中,我们研究了轨道积分的变化,作为变形群体的组代数$ g $的痕迹。我们表明轨道积分在变形下是连续的。我们证明,轨道积分与$ k $ - $ c^*_ r(g)$的元素之间的配对相对于常规组元素的变形保持不变,但在单数元素上有所不同。
In this short note, we study the variation of orbital integrals, as traces on the group algebra $G$, under the deformation groupoid. We show that orbital integrals are continuous under the deformation. And we prove that the pairing between orbital integrals and $K$-theory element of $C^*_r(G)$ stays constant with respect to the deformation for regular group elements, but vary at singular elements.