论文标题
$ f(r)$ gravity中的广义Ellis-Bronnikov虫洞
Generalised Ellis-Bronnikov Wormholes in $f(R)$ Gravity
论文作者
论文摘要
在此手稿中,我们在$ f(r)$修改的重力理论的背景下构建了广义的Ellis-Bronnikov虫洞。我们认为,驱动虫洞的物质满足能量条件,因此它是有效的能量量张量,其中包含违反无效能量条件的曲率术语的高阶衍生物。因此,引力流体由曲率项的高阶导数解释,以表示虫洞的几何形状,并且与其在一般相对论中的反式表示根本不同。特别是,我们通过假设Lagrangian $ f(r)$的各种著名形式来探索虫洞的几何形状。此外,为了寻求完整性,我们讨论了经过修改的Tolman-Oppenheimer-Volkov,体积积分量词和总重力能。
In this manuscript, we construct generalized Ellis-Bronnikov wormholes in the context of $f(R)$ modified theories of gravity. We consider that the matter driving the wormhole satisfies the energy conditions so that it is the effective energy-momentum tensor containing the higher-order derivatives of curvature terms that violate the null energy condition. Thus, the gravitational fluid is interpreted by the higher-order derivatives of curvature terms to represent the wormhole geometries and is fundamentally different from its counter representation in general relativity. In particular, we explore the wormhole geometries by presuming various well-known forms of Lagrangian $f(R)$. In addition, for the seek of completeness, we discuss modified Tolman-Oppenheimer-Volkov, volume integral quantifier, and total gravitational energy.