论文标题
等距组动作,猫(0)空间的逃逸率消失率
Isometric group actions with vanishing rate of escape on CAT(0) spaces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $Γ$ be a finitely generated group equipped with a symmetric and nondegenerate probability measure $μ$ with finite second moment, and $Y$ a CAT(0) space which is either proper or of finite telescopic dimension. We show that if an isometric action of $Γ$ on $Y$ has vanishing rate of escape with respect to $μ$ and does not fix a point in the boundary at infinity of $Y$, then there exists a flat subspace in $Y$ which is left invariant under the action of $Γ$. In the proof of this result, an equivariant $μ$-harmonic map from $Γ$ into $Y$ plays an important role.