论文标题

核心 - 各向同性作用和有理领域产物的等效形式

Equivariant formality of corank-one isotropy actions and products of rational spheres

论文作者

Carlson, Jeffrey, He, Chen

论文摘要

我们完全表征了连接的谎言组$ g> k $,以使$ \ mathrm {rank}(g) - \ mathrm {stark}(k)= 1 $,$ g/k $上的$ k $的左动作是等效的。该分析要求我们使用奇数和均值球体的产品的合理同型类型来纠正和扩展均质商$ g/k $的现有部分分类。

We completely characterize the pairs of connected Lie groups $G > K$ such that $\mathrm{rank}(G) - \mathrm{rank}(K) = 1$ and the left action of $K$ on $G/K$ is equivariantly formal. The analysis requires us to correct and extend an existing partial classification of homogeneous quotients $G/K$ with the rational homotopy type of a product of an odd- and an even-dimensional sphere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源