论文标题

变分量子脉冲学习

Variational Quantum Pulse Learning

论文作者

Liang, Zhiding, Wang, Hanrui, Cheng, Jinglei, Ding, Yongshan, Ren, Hang, Gao, Zhengqi, Hu, Zhirui, Boning, Duane S., Qian, Xuehai, Han, Song, Jiang, Weiwen, Shi, Yiyu

论文摘要

量子计算是解决经典硬件在计算上棘手的问题最有希望的新兴技术之一。大量现有作品着重于在栅极级别上使用变异量子算法来进行机器学习任务,例如变性量子电路(VQC)。但是,VQC由于参数数量有限,例如只能在一个旋转门中训练一个参数。另一方面,我们观察到量子脉冲低于一组量子计算中的量子门,并提供更多的控制参数。受VQC有希望的表现的启发,我们提出了变分量子脉冲(VQP),这是一种新型范式,可以直接训练量子脉冲以学习任务。所提出的方法通过在优化框架中拉出和推动脉冲幅度来操纵变异量子脉冲。与变分量子算法类似,我们的训练脉冲框架在嘈杂的中等规模量子(NISQ)计算机上保持了噪声的稳健性。在二进制分类的示例中,与Qiskit噪声模拟器上的VQC学习相比,VQP学习的准确性高达11%和9%,分别显示出其有效性和可行性。在存在噪声的情况下,VQP获得可靠结果的稳定性也得到了验证。

Quantum computing is among the most promising emerging techniques to solve problems that are computationally intractable on classical hardware. A large body of existing works focus on using variational quantum algorithms on the gate level for machine learning tasks, such as the variational quantum circuit (VQC). However, VQC has limited flexibility and expressibility due to limited number of parameters, e.g. only one parameter can be trained in one rotation gate. On the other hand, we observe that quantum pulses are lower than quantum gates in the stack of quantum computing and offers more control parameters. Inspired by the promising performance of VQC, in this paper we propose variational quantum pulses (VQP), a novel paradigm to directly train quantum pulses for learning tasks. The proposed method manipulates variational quantum pulses by pulling and pushing the amplitudes of pulses in an optimization framework. Similar to variational quantum algorithms, our framework to train pulses maintains the robustness to noise on Noisy Intermediate-Scale Quantum (NISQ) computers. In an example task of binary classification, VQP learning achieves up to 11% and 9% higher accuracy compared with VQC learning on the qiskit noise simulators (with noise model from real machine) and ibmq-jarkata, respectively, demonstrating its effectiveness and feasibility. Stability for VQP to obtain reliable results has also been verified in the presence of noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源