论文标题

合作感知的新型概率V2X数据融合框架

A Novel Probabilistic V2X Data Fusion Framework for Cooperative Perception

论文作者

Shan, Mao, Narula, Karan, Worrall, Stewart, Wong, Yung Fei, Perez, Julie Stephany Berrio, Gray, Paul, Nebot, Eduardo

论文摘要

本文介绍了合作或集体感知(CP)的车辆对X(V2X)数据融合。这种新兴和有前途的智能运输系统(ITS)技术具有提高道路运输效率和安全性的巨大潜力。 V2X通信的最新进展主要解决了交通环境中其电台(ITS-SS)之间V2X消息和数据传播的定义。然而,一个尚未解决的问题是,连接的车辆(CV)如何有效且一致地将其本地感知信息与从其他ITS-SS接收的数据融合在一起。在本文中,我们提出了一个新的数据融合框架,以融合CP的局部和V2X感知数据,以考虑互相关的存在。通过数值仿真,CARLA模拟和结合了启用V2X启用V2X的智能平台的现实世界实验获得的全面结果来验证所提出的方法。现实世界实验包括简历,连接和自动化的车辆(CAV)以及智能的路边单元(IRSU),该单元(IRSU)带有视觉和激光雷达传感器。我们还展示了融合的CP信息如何提高CV/CAV的脆弱道路使用者(VRU)的认识,以及如何在CAV内的路径规划/决策中考虑这些信息以促进安全的互动。

The paper addresses the vehicle-to-X (V2X) data fusion for cooperative or collective perception (CP). This emerging and promising intelligent transportation systems (ITS) technology has enormous potential for improving efficiency and safety of road transportation. Recent advances in V2X communication primarily address the definition of V2X messages and data dissemination amongst ITS stations (ITS-Ss) in a traffic environment. Yet, a largely unsolved problem is how a connected vehicle (CV) can efficiently and consistently fuse its local perception information with the data received from other ITS-Ss. In this paper, we present a novel data fusion framework to fuse the local and V2X perception data for CP that considers the presence of cross-correlation. The proposed approach is validated through comprehensive results obtained from numerical simulation, CARLA simulation, and real-world experimentation that incorporates V2X-enabled intelligent platforms. The real-world experiment includes a CV, a connected and automated vehicle (CAV), and an intelligent roadside unit (IRSU) retrofitted with vision and lidar sensors. We also demonstrate how the fused CP information can improve the awareness of vulnerable road users (VRU) for CV/CAV, and how this information can be considered in path planning/decision making within the CAV to facilitate safe interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源