论文标题
衡量通勤转换的尺寸熵的次要性
Sub-additivity of measure-theoretic entropies of commuting transformations on Banach space
论文作者
论文摘要
本文考虑了两个通勤在Banach空间上的通勤转换,并证明了在轻度条件下的理论熵的次要性。此外,还为熵的平等提供了一些其他条件。这扩展了HU在有限的维空间中通勤差异性的工作(Huyi Hu,1993,Ergod。Th。Dynam。Sys。,\ textbf {13}:73-100)与无限尺寸尺寸Banach空间上的系统案例。
This paper considers two commuting smooth transformations on a Banach space, and proves the sub-additivity of the measure theoretic entropies under mild conditions. Furthermore, some additional conditions are given for the equality of the entropies. This extends Hu's work about commuting diffeomorphisms in a finite dimensional space (Huyi Hu, 1993, Ergod. Th. Dynam. Sys., \textbf{13}: 73-100) to the case of systems on an infinite dimensional Banach space.