论文标题
半鼻网上的经典和量子气
Classical and Quantum Gases on a Semiregular Mesh
论文作者
论文摘要
统计机械计算的主要目标是绘制多体系统的相图。在这方面,离散的系统比连续体系统具有明显的优势,尽管以增加的抽象为代价,但更容易列举微杆。考虑到这一点,我们检查了一个生活在五角洲五角体(Pentakis dodecahedron)顶点上的颗粒系统,使用了第一和第二个邻居颗粒的不同耦合,以诱导二十面体和十字形阶订单之间的竞争。在零温度下计算模型的阶段后,我们在有限的温度下进行大都市蒙特卡洛模拟,突出了不同的“阶段”之间的平滑过渡的存在,这些最尖锐的交叉行为的特征是在零温度附近,这揭示了Metropolis在状态空间中动态的botterlecleck问题。接下来,我们介绍了先前模型的量子(bose-Hubbard)对应物,并使用脱钩近似在零和有限温度下计算其相图。因此,除了莫特(Mott)绝缘“固体”之外,我们还发现了Supersolid“阶段”的存在,随着系统的加热,它们逐渐收缩。我们认为,可以使用可编程全息光学镊子实现此处描述的量子系统。
The main objective of a statistical mechanical calculation is drawing the phase diagram of a many-body system. In this respect, discrete systems offer the clear advantage over continuum systems of an easier enumeration of microstates, though at the cost of added abstraction. With this in mind, we examine a system of particles living on the vertices of the (biscribed) pentakis dodecahedron, using different couplings for first and second neighbor particles to induce a competition between icosahedral and dodecahedral orders. After working out the phases of the model at zero temperature, we carry out Metropolis Monte Carlo simulations at finite temperature, highlighting the existence of smooth transitions between distinct "phases", The sharpest of these crossovers are characterized by hysteretic behavior near zero temperature, which reveals a bottleneck issue for Metropolis dynamics in state space. Next, we introduce the quantum (Bose-Hubbard) counterpart of the previous model and calculate its phase diagram at zero and finite temperatures using the decoupling approximation. We thus uncover, in addition to Mott insulating "solids", also the existence of supersolid "phases" which progressively shrink as the system is heated up. We argue that a quantum system of the kind described here can be realized with programmable holographic optical tweezers.