论文标题
MPS-NERF:可推广的3D人类从多视图图像渲染
MPS-NeRF: Generalizable 3D Human Rendering from Multiview Images
论文作者
论文摘要
最近,基于神经辐射场(NERF)的进步,在3D人类渲染方面取得了迅速的进步,包括新型视图合成和姿势动画。但是,大多数现有方法集中在特定于人的培训上,他们的培训通常需要多视频视频。本文处理了一项新的挑战性任务 - 为在培训中看不见的人提供新颖的观点和小说姿势,仅使用多视图像作为输入。对于此任务,我们提出了一种简单而有效的方法,以训练具有多视图像作为条件输入的可推广的NERF。关键成分是结合规范NERF和体积变形方案的专用表示。使用规范空间使我们的方法能够学习人类的共享特性,并轻松地推广到不同的人。音量变形用于将规范空间与输入和目标图像以及查询图像特征连接起来,以进行辐射和密度预测。我们利用拟合在输入图像上的参数3D人类模型来得出变形,与我们的规范NERF结合使用,它在实践中效果很好。具有新的观点合成和构成动画任务的真实和合成数据的实验共同证明了我们方法的功效。
There has been rapid progress recently on 3D human rendering, including novel view synthesis and pose animation, based on the advances of neural radiance fields (NeRF). However, most existing methods focus on person-specific training and their training typically requires multi-view videos. This paper deals with a new challenging task -- rendering novel views and novel poses for a person unseen in training, using only multiview images as input. For this task, we propose a simple yet effective method to train a generalizable NeRF with multiview images as conditional input. The key ingredient is a dedicated representation combining a canonical NeRF and a volume deformation scheme. Using a canonical space enables our method to learn shared properties of human and easily generalize to different people. Volume deformation is used to connect the canonical space with input and target images and query image features for radiance and density prediction. We leverage the parametric 3D human model fitted on the input images to derive the deformation, which works quite well in practice when combined with our canonical NeRF. The experiments on both real and synthetic data with the novel view synthesis and pose animation tasks collectively demonstrate the efficacy of our method.