论文标题
在电力系统控制的仿射约束下,分散的凸优化
Decentralized convex optimization under affine constraints for power systems control
论文作者
论文摘要
现代电力系统现在正在持续发生巨大变化的过程。分布式生成的渗透率增加,储能的使用和可控需求需要引入新的控制范式,该范式不依赖于集中式方法所需的大规模信息交换。分布式算法只能依靠邻居的有限信息来获得针对各种优化问题的最佳解决方案,例如最佳功率流,单位承诺等。 作为这些问题的概括,我们考虑了平稳和凸的分散性最小化的问题,部分可分开的函数$ f = \ sum_ {k = 1}^l f^k(x^k,x^k,\ tilde x)$ coupled $ \ sum_ = sum_ {k = 1}} \ tilde {x} - \ tilde {b} \ leq 0 $仿射约束,其中有关$ a^k $和$ b^k $的信息仅适用于计算网络的$ k $ th节点。 以分布式方式处理耦合约束的一种方法是使用通信图和辅助变量的拉普拉斯矩阵以分布式友好的形式重写它们(Khamisov,CDC,2017)。我们不使用这种方法将受约束的优化问题重新将鞍点问题(spp)重新重新调整,并利用共识约束技术使其对分布式友好。然后,我们为应用于此spp的最先进的SPP解决算法提供了复杂性分析。
Modern power systems are now in continuous process of massive changes. Increased penetration of distributed generation, usage of energy storage and controllable demand require introduction of a new control paradigm that does not rely on massive information exchange required by centralized approaches. Distributed algorithms can rely only on limited information from neighbours to obtain an optimal solution for various optimization problems, such as optimal power flow, unit commitment etc. As a generalization of these problems we consider the problem of decentralized minimization of the smooth and convex partially separable function $f = \sum_{k=1}^l f^k(x^k,\tilde x)$ under the coupled $\sum_{k=1}^l (A^k x^k - b^k) \leq 0$ and the shared $\tilde{A} \tilde{x} - \tilde{b} \leq 0$ affine constraints, where the information about $A^k$ and $b^k$ is only available for the $k$-th node of the computational network. One way to handle the coupled constraints in a distributed manner is to rewrite them in a distributed-friendly form using the Laplace matrix of the communication graph and auxiliary variables (Khamisov, CDC, 2017). Instead of using this method we reformulate the constrained optimization problem as a saddle point problem (SPP) and utilize the consensus constraint technique to make it distributed-friendly. Then we provide a complexity analysis for state-of-the-art SPP solving algorithms applied to this SPP.