论文标题

积极学习二进制进化模拟的计算有效分布

Active Learning for Computationally Efficient Distribution of Binary Evolution Simulations

论文作者

Rocha, Kyle Akira, Andrews, Jeff J., Berry, Christopher P. L., Doctor, Zoheyr, Katsaggelos, Aggelos K., Pérez, Juan Gabriel Serra, Marchant, Pablo, Kalogera, Vicky, Coughlin, Scott, Bavera, Simone S., Dotter, Aaron, Fragos, Tassos, Kovlakas, Konstantinos, Misra, Devina, Xing, Zepei, Zapartas, Emmanouil

论文摘要

二进制恒星经历各种相互作用和进化阶段,对于预测和解释观察到的特性至关重要。具有完整恒星结构和进化模拟的二元种群合成在计算上需要大量的质量转移序列。最近开发的二元种群合成代码Posydon结合了台面二元星模拟的网格,然后将其插值以模拟大型二进制文件的大规模种群。计算高密度直线网格模拟的传统方法对于更高维度网格无法扩展,这是一系列金属性,旋转和偏心率的范围。我们提出了一种新的主​​动学习算法PSY-CRI,该算法使用数据收集过程中的机器学习来适应和迭代选择目标模拟以运行,从而导致自定义,高性能的训练集。我们在玩具问题上测试了PSY-CRI,发现所得的训练集比常规或随机采样网格所需的模拟更少以进行准确的分类和回归。我们进一步将psy-cris应用于构建台面模拟动态网格的目标问题,我们证明,即使没有微调,仅$ \ sim 1/4 $的模拟集的大小是直线网格的大小,足以达到相同的分类精度。当针对目标应用程序优化算法参数时,我们预计将进一步提高。我们发现,仅对分类进行优化可能会导致回归的绩效损失,反之亦然。降低产生网格的计算成本将使Posydon的未来版本涵盖更多的输入参数,同时保留插值精度。

Binary stars undergo a variety of interactions and evolutionary phases, critical for predicting and explaining observed properties. Binary population synthesis with full stellar-structure and evolution simulations are computationally expensive requiring a large number of mass-transfer sequences. The recently developed binary population synthesis code POSYDON incorporates grids of MESA binary star simulations which are then interpolated to model large-scale populations of massive binaries. The traditional method of computing a high-density rectilinear grid of simulations is not scalable for higher-dimension grids, accounting for a range of metallicities, rotation, and eccentricity. We present a new active learning algorithm, psy-cris, which uses machine learning in the data-gathering process to adaptively and iteratively select targeted simulations to run, resulting in a custom, high-performance training set. We test psy-cris on a toy problem and find the resulting training sets require fewer simulations for accurate classification and regression than either regular or randomly sampled grids. We further apply psy-cris to the target problem of building a dynamic grid of MESA simulations, and we demonstrate that, even without fine tuning, a simulation set of only $\sim 1/4$ the size of a rectilinear grid is sufficient to achieve the same classification accuracy. We anticipate further gains when algorithmic parameters are optimized for the targeted application. We find that optimizing for classification only may lead to performance losses in regression, and vice versa. Lowering the computational cost of producing grids will enable future versions of POSYDON to cover more input parameters while preserving interpolation accuracies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源