论文标题
低能量质子作为强环动力学探针
Low Energy Protons as Probes of Hadronization Dynamics
论文作者
论文摘要
能量夸克从核深弹性散射中从核介质中传播的能量夸克通过多个过程与之相互作用。这些包括夸克能量损失和形成的hadron的核相互作用。这些相互作用的一种表现是增强了低能带电颗粒的发射,称为灰色轨道。我们使用Beagle事件发生器的理论组件来解释Parton Transport和Handron形成的灰色轨道特征,通过将其预测与E665数据进行比较。我们通过添加描述Parton能量损失的四个不同选项来扩展Beagle的基本版本。我们使用的E665数据由XE上490 GEV MUON的固定目标散射的多种比率归一化为氘,这是灰色轨道数量的函数。我们将E665灰色轨道的多重性比与Beagle的预测进行了比较,从而改变了选项和参数,以确定这些数据可以识别哪些物理现象。我们发现灰色轨道不受正向生产的修改影响。因此,他们的产量必须由与落后区域中的黑龙相互作用主导。这提供了一个优势,即在正向区域中选择某些颗粒不太可能偏向中心性选择。我们看到灰色轨道的数量与中等路径长度之间存在很强的相关性。我们的能量损失模型不会再现在弹丸区域观察到的抑制。我们看到向后运动学中质子产生速率的低估,这表明与核培养基相互作用更强的来源是准确的建模所需的。这些结果为杰斐逊实验室和电子撞机的未来观众标记研究奠定了重要的基础,在那里中子和质子灰色轨道研究将是可行的,直到很小的动量。
Energetic quarks liberated from hadrons in nuclear deep-inelastic scattering propagate through the nuclear medium, interacting with it via several processes. These include quark energy loss and nuclear interactions of forming hadrons. One manifestation of these interactions is the enhanced emission of low-energy charged particles, referred to as grey tracks. We use the theoretical components of the BeAGLE event generator to interpret grey track signatures of parton transport and hadron formation by comparing its predictions to E665 data. We extend the base version of BeAGLE by adding four different options for describing parton energy loss. The E665 data we used consists of multiplicity ratios for fixed-target scattering of 490 GeV muons on Xe normalized to deuterium as a function of the number of grey tracks. We compare multiplicity ratios for E665 grey tracks to the predictions of BeAGLE, varying the options and parameters to determine which physics phenomena can be identified by these data. We find that grey tracks are unaffected by modifications of the forward production. Thus their production must be dominated by interactions with hadrons in the backward region. This offers the advantage that selecting certain particles in the forward region is unlikely to bias a centrality selection. We see a strong correlation between the number of grey tracks and the in-medium path length. Our energy loss model does not reproduce the suppression observed in the projectile region. We see an underprediction of the proton production rate in backward kinematics, suggesting that a stronger source of interaction with the nuclear medium is needed for accurate modeling. These results lay an important foundation for future spectator tagging studies at both Jefferson Lab and at the Electron-Ion Collider, where neutron and proton grey track studies will be feasible down to very small momenta.