论文标题
渐近抗DE的边界条件
Boundary conditions for isolated asymptotically anti-de Sitter spacetimes
论文作者
论文摘要
我们在时空中重新审视经典标量场的传播,该时期是渐近的抗DE保姆。潜在背景的全局双曲线缺乏使波动方程溶液的动态演变含糊不清,需要在保形无穷大处处方额外的边界条件才能固定。我们表明,唯一的边界条件与以下假设兼容:该系统是由(改进的)能量弹药量定义的,是Dirichlet和Neumann类型的。
We revisit the propagation of classical scalar fields in a spacetime which is asymptotically anti-de Sitter. The lack of global hyperbolicity of the underlying background gives rise to an ambiguity in the dynamical evolution of solutions of the wave equation, requiring the prescription of extra boundary conditions at the conformal infinity to be fixed. We show that the only boundary conditions tha are compatible with the hypothesis that the system is isolated, as defined by the (improved) energy-momentum tensor, are of Dirichlet and Neumann types.