论文标题

Rook图的gonality

The Gonality of Rook Graphs

论文作者

Speeter, Noah

论文摘要

二维的Rook图是两个完整图的笛卡尔产物。在本文中,我们证明这些图的高度是$(n-1)m $的预期值,其中$ n $是较小的完整图的大小,$ m $的大小是较大的大小。此外,我们计算这些图的2和3个性。我们还探索了这些图的争夺数,这是一个新的图形不变性,并且在gonation上是一个下限。

Two dimensional rook graphs are the Cartesian product of two complete graphs. In this paper we prove that the gonality of these graphs is the expected value of $(n-1)m$ where $n$ is the size of the smaller complete graph and $m$ is the size of the larger. furthermore we compute the 2 and 3 gonalities of these graphs. We also explore the scramble number of these graphs, which is a new graph invariant and a lower bound on the gonality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源