论文标题
收缩压的共享参数模型会计数据在狩猎研究中并非随机丢失的数据
A Shared Parameter Model for Systolic Blood Pressure Accounting for Data Missing Not at Random in the HUNT Study
论文作者
论文摘要
在这项工作中,提前11年的血压是使用基于纵向人群的健康调查,Trondelag Health(HUNT)研究的数据来建模的,同时考虑了由于连续调查(20-50%)之间辍学而导致的数据丢失。我们提出并验证贝叶斯框架中的共享参数模型(SPM),其中年龄,性别,体重指数和初始血压作为解释变量。此外,我们提出了一种新颖的评估方案,通过比较拟合的SPM的预测性能,并在缺失过程中进行条件,以评估不是随机的数据(MNAR)。结果表明,SPM适合推断此大小的数据集(64385名参与者)和结构。 SPM指示数据MNAR,并给出不同的参数估计值,与随机丢失的数据相比,与天真的模型相比。根据验证数据集中的预测性能比较SPM和NAIVE模型。对于目前的参与者,天真的模型的性能比SPM稍好。这与基于SPM的仿真研究的结果一致,在该研究中,我们发现天真模型对当前参与者的表现更好,而SPM在辍学方面的表现更好。
In this work, blood pressure eleven years ahead is modeled using data from a longitudinal population-based health survey, the Trondelag Health (HUNT) Study, while accounting for missing data due to dropout between consecutive surveys (20-50 %). We propose and validate a shared parameter model (SPM) in the Bayesian framework with age, sex, body mass index, and initial blood pressure as explanatory variables. Further, we propose a novel evaluation scheme to assess data missing not at random (MNAR) by comparing the predictive performance of the fitted SPM with and without conditioning on the missing process. The results demonstrate that the SPM is suitable for inference for a dataset of this size (cohort of 64385 participants) and structure. The SPM indicates data MNAR and gives different parameter estimates than a naive model assuming data missing at random. The SPM and naive models are compared based on predictive performance in a validation dataset. The naive model performs slightly better than the SPM for the present participants. This is in accordance with results from a simulation study based on the SPM where we find that the naive model performs better for the present participants, while the SPM performs better for the dropouts.