论文标题

学习要完成点云的本地位移

Learning Local Displacements for Point Cloud Completion

论文作者

Wang, Yida, Tan, David Joseph, Navab, Nassir, Tombari, Federico

论文摘要

我们提出了一种针对物体和语义场景完成的新颖方法,该方法是由代表3D点云的部分扫描完成的。我们的体系结构依赖于三个新颖的层,这些新层依次在编码器解码器结构中使用,并专门用于手头的任务。第一个通过将点特征与一组预先训练的本地描述符匹配来进行功能提取。然后,为了避免将单个描述符作为标准操作(例如最大化)的一部分,我们提出了一个替代依赖于具有最高激活的特征向量的替代邻域操作。最后,解码器中的向上采样会修改我们的特征提取,以增加输出维度。尽管该模型已经能够通过最新技术实现竞争成果,但我们进一步提出了一种提高处理点云方法多功能性的方法。为此,我们介绍了第二个模型,该模型在变压器体系结构中组装了我们的层。我们评估对象和室内场景完成任务的架构,以实现最新的性能。

We propose a novel approach aimed at object and semantic scene completion from a partial scan represented as a 3D point cloud. Our architecture relies on three novel layers that are used successively within an encoder-decoder structure and specifically developed for the task at hand. The first one carries out feature extraction by matching the point features to a set of pre-trained local descriptors. Then, to avoid losing individual descriptors as part of standard operations such as max-pooling, we propose an alternative neighbor-pooling operation that relies on adopting the feature vectors with the highest activations. Finally, up-sampling in the decoder modifies our feature extraction in order to increase the output dimension. While this model is already able to achieve competitive results with the state of the art, we further propose a way to increase the versatility of our approach to process point clouds. To this aim, we introduce a second model that assembles our layers within a transformer architecture. We evaluate both architectures on object and indoor scene completion tasks, achieving state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源