论文标题
电动单孔及其稳定性
Electroweak monopoles and their stability
论文作者
论文摘要
我们应用广义场ansatz来描述电牵引理论的经典解决方案的球形对称扇区。该扇区包含由其磁性电荷标记的Abelian磁性单极$ n = \ pm 1,\ pm 2,\ ldots $,$ n = \ pm 2 $的非阿贝尔单子$,也是由Cho and Maison(CM)和电动振荡的解决方案。所有磁性单极具有无限的能量。我们分析了它们的扰动稳定性,并使用复杂的时空四分法的方法将变量分开,并将扰动方程减少到多频道Schroedinger-Schroedinger-type特征值问题。 CM单极周围的扰动光谱不包含负模式,因此该解决方案稳定。 $ n = \ pm 1 $ abelian单子也稳定,但是所有带有$ | n | \ geq 2 $的单极相对于具有角动量的扰动$ j = | n |/2-1 $不稳定。 Abelian $ | n | = 2 $单子仅在$ j = 0 $扇区内不稳定,而CM Monopole也具有$ | n | = 2 $,并且属于同一部门,因此可以将其视为Abelian Monopole衰减的稳定残余。同样可以猜想的是,对于具有$ | n |> 2 $的单孔也存在稳定的残余物,因此CM单子可能只是具有较高磁性电荷的非亚伯式单子序列的第一个成员。只有CM单子是球形对称的,而所有具有$ | n |> 2 $的非亚伯式单极均不旋转不变。
We apply a generalized field ansatz to describe the spherically symmetric sector of classical solutions of the electroweak theory. This sector contains Abelian magnetic monopoles labeled by their magnetic charge $n=\pm 1,\pm 2,\ldots$, the non-Abelian monopole for $n=\pm 2$ found previously by Cho and Maison (CM), and also the electric oscillating solutions. All magnetic monopoles have infinite energy. We analyze their perturbative stability and use the method of complex spacetime tetrad to separate variables and reduce the perturbation equations to multi-channel Schroedinger-type eigenvalue problems. The spectra of perturbations around the CM monopole do not contain negative modes hence this solution is stable. The $n=\pm 1$ Abelian monopole is also stable, but all monopoles with $|n|\geq 2$ are unstable with respect to perturbations with angular momentum $j=|n|/2-1$. The Abelian $|n|=2$ monopole is unstable only within the $j=0$ sector whereas the CM monopole also has $|n|=2$ and belongs to the same sector, hence it may be viewed as a stable remnant of the decay of the Abelian monopole. One may similarly conjecture that stable remnants exist also for monopoles with $|n|>2$, hence the CM monopole may be just the first member of a sequence of non-Abelian monopoles with higher magnetic charges. Only the CM monopole is spherically symmetric while all non-Abelian monopoles with $|n|>2$ are not rotationally invariant.