论文标题

宇宙:基于目标感知域的翻译和迭代自我训练的3D医疗图像分割的跨模式适应3D医疗图像分割

COSMOS: Cross-Modality Unsupervised Domain Adaptation for 3D Medical Image Segmentation based on Target-aware Domain Translation and Iterative Self-Training

论文作者

Shin, Hyungseob, Kim, Hyeongyu, Kim, Sewon, Jun, Yohan, Eo, Taejoon, Hwang, Dosik

论文摘要

在完全监督的状态下,基于深度学习的医学图像细分研究的最新进展几乎达到了人类水平的表现。但是,在医学成像领域中获取像素级专家注释非常昂贵且费力。无监督的域适应性可以减轻此问题,这使得在一个成像模态中使用带注释的数据来训练一个可以成功地对目标成像模式进行分割而没有标签的网络。在这项工作中,我们提出了一个基于自我训练的无监督域适应框架,用于3D医疗图像分割,并在高分辨率T2磁共振图像(MRI)上自动分割前庭schwannoma(VS)和耳蜗自动分割。我们的目标感染对比转换网络将带有T1 MRI的源域转换为伪T2 MRI,以实现目标域的分割培训,同时保留了转换的图像中感兴趣的重要解剖学特征。遵循迭代的自我训练,将未标记的数据纳入训练并逐步提高伪标签的质量,从而导致分割的性能提高。 Cosmos赢得了与第24届国际医学图像计算和计算机辅助干预措施(MICCAI 2021)一起举行的交叉模式域适应(CrossModa)挑战的1 \ TextSuperscript {ST}。它的平均骰子得分和平均对称表面距离为0.871(0.063),VS达到0.437(0.270),而耳蜗的平均骰子得分为0.871(0.063),0.842(0.020)和0.842(0.020)(0.020)(0.030)。

Recent advances in deep learning-based medical image segmentation studies achieve nearly human-level performance when in fully supervised condition. However, acquiring pixel-level expert annotations is extremely expensive and laborious in medical imaging fields. Unsupervised domain adaptation can alleviate this problem, which makes it possible to use annotated data in one imaging modality to train a network that can successfully perform segmentation on target imaging modality with no labels. In this work, we propose a self-training based unsupervised domain adaptation framework for 3D medical image segmentation named COSMOS and validate it with automatic segmentation of Vestibular Schwannoma (VS) and cochlea on high-resolution T2 Magnetic Resonance Images (MRI). Our target-aware contrast conversion network translates source domain annotated T1 MRI to pseudo T2 MRI to enable segmentation training on target domain, while preserving important anatomical features of interest in the converted images. Iterative self-training is followed to incorporate unlabeled data to training and incrementally improve the quality of pseudo-labels, thereby leading to improved performance of segmentation. COSMOS won the 1\textsuperscript{st} place in the Cross-Modality Domain Adaptation (crossMoDA) challenge held in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). It achieves mean Dice score and Average Symmetric Surface Distance of 0.871(0.063) and 0.437(0.270) for VS, and 0.842(0.020) and 0.152(0.030) for cochlea.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源