论文标题

嘈杂随机电路的纠缠动态

Entanglement Dynamics of Noisy Random Circuits

论文作者

Li, Zhi, Sang, Shengqi, Hsieh, Timothy H.

论文摘要

开放量子系统在环境中热元既具有基本兴趣,又与嘈杂的量子设备相关的过程。作为此过程的最小模型,我们考虑在局部随机单位和局部去极化通道下演变的Qudit链。在映射到统计力学模型之后,去极化(噪声)的作用就像是对称性的磁场,我们认为它会导致系统在时间尺度内进行热化,而不是独立于系统大小。我们表明,各种两部分的纠缠措施 - 相互信息,操作员纠缠和纠缠否定性 - 以与两部分边界大小成比例的速度生长。结果,这些纠缠衡量了遵守区域定律:它们在动力学期间的最大价值是由边界而不是体积界定的。相反,如果去极化仅作用于系统边界,则纠缠的最大值可以遵守体积定律。我们使用涉及Clifford门的可扩展模拟来补充我们的分析,用于一维系统和二维系统。

The process by which open quantum systems thermalize with an environment is both of fundamental interest and relevant to noisy quantum devices. As a minimal model of this process, we consider a qudit chain evolving under local random unitaries and local depolarization channels. After mapping to a statistical mechanics model, the depolarization (noise) acts like a symmetry-breaking field, and we argue that it causes the system to thermalize within a timescale independent of system size. We show that various bipartite entanglement measures -- mutual information, operator entanglement, and entanglement negativity -- grow at a speed proportional to the size of the bipartition boundary. As a result, these entanglement measures obey an area law: Their maximal value during the dynamics is bounded by the boundary instead of the volume. In contrast, if the depolarization only acts at the system boundary, then the maximum value of the entanglement measures obeys a volume law. We complement our analysis with scalable simulations involving Clifford gates, for both one- and two-dimensional systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源