论文标题

用于噪音偏置的颜色代码的蜂窝自动机解码器

A cellular automaton decoder for a noise-bias tailored color code

论文作者

Miguel, Jonathan F. San, Williamson, Dominic J., Brown, Benjamin J.

论文摘要

自我校正的量子记忆证明了可利用的鲁棒特性,以改善主动量子误差校正协议。在这里,我们为颜色代码的变体提出了一个蜂窝自动机解码器,其中物理量表的基础是局部旋转的,我们称之为XYZ颜色代码。局部转换意味着我们的解码器如果对系统上的噪声无限地偏向于dephasing,即没有字符串样逻辑运算符,则表现出二维分形代码的关键属性。因此,在高偏差限制下,我们的本地解码器重现了部分自我校正内存的行为。在较低的错误率下,我们的模拟表明,内存时间与系统大小在没有干预的情况下从全局解码器中分散,最多可随着误差率而增长的一些关键系统大小。此外,尽管我们发现我们无法在有限偏见的情况下重现部分自我纠正的行为,但我们的数字在现实的噪声偏见下表现出了改善的记忆时间。因此,我们的结果激发了定制的细胞自动机解码器的设计,这有助于减少对现实噪声模型全球解码的带宽需求。

Self-correcting quantum memories demonstrate robust properties that can be exploited to improve active quantum error-correction protocols. Here we propose a cellular automaton decoder for a variation of the color code where the bases of the physical qubits are locally rotated, which we call the XYZ color code. The local transformation means our decoder demonstrates key properties of a two-dimensional fractal code if the noise acting on the system is infinitely biased towards dephasing, namely, no string-like logical operators. As such, in the high-bias limit, our local decoder reproduces the behavior of a partially self-correcting memory. At low error rates, our simulations show that the memory time diverges polynomially with system size without intervention from a global decoder, up to some critical system size that grows as the error rate is lowered. Furthermore, although we find that we cannot reproduce partially self-correcting behavior at finite bias, our numerics demonstrate improved memory times at realistic noise biases. Our results therefore motivate the design of tailored cellular automaton decoders that help to reduce the bandwidth demands of global decoding for realistic noise models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源