论文标题
部分可观测时空混沌系统的无模型预测
A phase-field model for ferroelectrics with general kinetics. Part I: Model formulation
论文作者
论文摘要
当受到电力载荷的影响时,铁电体看到它们的极化通过域的成核和演变而演变。现有的用于铁电的中尺度相位模型通常是基于阶段的梯度定律,用于订单参数的演变。尽管这种隐式假设域壁随线性动力学演变而成,但实验表明域壁动力学是非线性的。反过来,这是对极化切换中速率依赖性效应建模的重要特征。我们提出了一种用于铁电的新的多相模型,该模型允许具有非线性动力学的结构壁运动,并应用于其他固体固相中转化问题。通过分析行动波解决方案,我们表征了由一般动力学模型提供的直域壁的界面特性(能量和宽度)和直域壁的界面动力学,并将它们与经典艾伦模型的界面动力学进行了比较。我们表明,所提出的模型以任意选择的非线性动力学关系传播域壁,根据实验证据,可以对不同类型的域壁进行调节。
When subjected to electro-mechanical loading, ferroelectrics see their polarization evolve through the nucleation and evolution of domains. Existing mesoscale phase-field models for ferroelectrics are typically based on a gradient-descent law for the evolution of the order parameter. While this implicitly assumes that domain walls evolve with linear kinetics, experiments instead indicate that domain wall kinetics is nonlinear. This, in turn, is an important feature for the modeling of rate-dependent effects in polarization switching. We propose a new multiple-phase-field model for ferroelectrics, which permits domain wall motion with nonlinear kinetics, with applications in other solid-solid phase transformation problems. By means of analytical traveling wave solutions, we characterize the interfacial properties (energy and width) and the interface kinetics of straight domain walls, as furnished by the general kinetics model, and compare them to those of the classical Allen--Cahn model. We show that the proposed model propagates domain walls with arbitrarily chosen nonlinear kinetic relations, which can be tuned to differ for the different types of domain walls in accordance with experimental evidence.