论文标题

学习多目标粗糙的地形遍历性

Learning multiobjective rough terrain traversability

论文作者

Wallin, Erik, Wiberg, Viktor, Vesterlund, Folke, Holmgren, Johan, Persson, Henrik, Servin, Martin

论文摘要

我们提出了一种使用粗糙地形和地面车辆模拟的高分辨率地形数据来预测遍历性的方法。遍历性表示为三种独立措施:以目标速度,能耗和加速度遍历地形的能力。这些措施是连续的,反映了超越二元分类的计划的不同目标。对深度神经网络进行了训练,以预测局部高度图和目标速度的遍历度措施。为了产生培训数据,我们使用带有轮子悬架的铰接式车辆和程序生成的地形。我们评估了该模型以前未见的激光扫描森林地形的模型。该模型以90%的精度预测遍历性。预测依赖于相对于标题超过局部粗糙度和斜率的高维地形数据的特征。相关性表明,三种遍历性措施是相互互补的。该推理速度的速度比地面真相模拟的速度快3000倍,并且该模型非常适合在大面积上进行遍历性分析和最佳路径计划。

We present a method that uses high-resolution topography data of rough terrain, and ground vehicle simulation, to predict traversability. Traversability is expressed as three independent measures: the ability to traverse the terrain at a target speed, energy consumption, and acceleration. The measures are continuous and reflect different objectives for planning that go beyond binary classification. A deep neural network is trained to predict the traversability measures from the local heightmap and target speed. To produce training data, we use an articulated vehicle with wheeled bogie suspensions and procedurally generated terrains. We evaluate the model on laser-scanned forest terrains, previously unseen by the model. The model predicts traversability with an accuracy of 90%. Predictions rely on features from the high-dimensional terrain data that surpass local roughness and slope relative to the heading. Correlations show that the three traversability measures are complementary to each other. With an inference speed 3000 times faster than the ground truth simulation and trivially parallelizable, the model is well suited for traversability analysis and optimal path planning over large areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源