论文标题
列表$ 4 $ - 颜色的平面图
List $4$-colouring of planar graphs
论文作者
论文摘要
本文证明了以下结果:如果$ g $是平面图,而$ l $是$ 4 $ list $ g $的分配,以便$ | l(x)\ cap l(y)| \ le 2 $对于每个边缘$ xy $,然后$ g $是$ l $ - 颜色。这回答了Kratochvíl,tuza和voigt在[杂志理论杂志,27(1):43--49,1998]中提出的一个问题。
This paper proves the following result: If $G$ is a planar graph and $L$ is a $4$-list assignment of $G$ such that $|L(x) \cap L(y)| \le 2$ for every edge $xy$, then $G$ is $L$-colourable. This answers a question asked by Kratochvíl, Tuza and Voigt in [Journal of Graph Theory, 27(1):43--49, 1998].