论文标题
研究主题趋势趋势预测基于空间增强和动态图卷积网络的科学论文
Research topic trend prediction of scientific papers based on spatial enhancement and dynamic graph convolution network
论文作者
论文摘要
近年来,随着科学研究中社会投资的增加,各个领域的研究结果数量已大大增加。准确有效地预测未来研究主题的趋势可以帮助研究人员发现未来的研究热点。但是,由于各种研究主题之间越来越紧密的相关性,大量研究主题之间存在一定的依赖关系。孤立地查看单个研究主题并使用传统的序列问题处理方法无法有效探索这些研究主题之间的空间依赖性。为了同时捕获研究主题之间的空间依赖性和时间变化,我们提出了一个基于神经网络的研究主题热力预测算法,这是一种时空卷积网络模型。我们的模型结合了图形卷积神经网络(GCN)和时间卷积网络(TCN),具体来说,GCN用于学习研究主题A的空间依赖性,并使用空间依赖性来增强空间特征。 TCN用于学习研究主题趋势的动态。优化基于基于时间距离的加权损失的计算。与当前主流序列预测模型和纸质数据集上的类似时空模型相比,实验表明,在研究主题预测任务中,我们的模型可以有效地捕获时空关系和预测的前提均优于最新的底层基线。
In recent years, with the increase of social investment in scientific research, the number of research results in various fields has increased significantly. Accurately and effectively predicting the trends of future research topics can help researchers discover future research hotspots. However, due to the increasingly close correlation between various research themes, there is a certain dependency relationship between a large number of research themes. Viewing a single research theme in isolation and using traditional sequence problem processing methods cannot effectively explore the spatial dependencies between these research themes. To simultaneously capture the spatial dependencies and temporal changes between research topics, we propose a deep neural network-based research topic hotness prediction algorithm, a spatiotemporal convolutional network model. Our model combines a graph convolutional neural network (GCN) and Temporal Convolutional Network (TCN), specifically, GCNs are used to learn the spatial dependencies of research topics a and use space dependence to strengthen spatial characteristics. TCN is used to learn the dynamics of research topics' trends. Optimization is based on the calculation of weighted losses based on time distance. Compared with the current mainstream sequence prediction models and similar spatiotemporal models on the paper datasets, experiments show that, in research topic prediction tasks, our model can effectively capture spatiotemporal relationships and the predictions outperform state-of-art baselines.