论文标题

临界现象高于临界维度的有效维度理论

Effective-Dimension Theory of Critical Phenomena above Upper Critical Dimensions

论文作者

Zeng, Shaolong, Szeto, Sue Ping, Zhong, Fan

论文摘要

相位过渡和批判现象是本质上最有趣的现象之一,其重新归一化组理论是理论物理学的最大成就之一。但是,对高​​于上层临界维度上方理论的预测$ d_c $严重不同意现实。除了其基本意义外,问题还具有实际重要性,因为具有空间或时间长度相互作用的复杂系统和量子相变的复杂系统都可以大大降低$ d_c $。现存的场景建立在解决问题的危险无关变量(DIV)上,引入了两组关键指数,甚至是两组缩放定律,它们的起源是晦涩的。在这里,我们从不同的角度考虑了DIV,并且清楚地揭示了两组指数的起源,因此在这些情况下具有内在的不一致。然后,我们开发了一种有效的维度理论,在该理论中,DIV的临界波动和系统量在有效的维度上固定在有效的维度上。这使我们能够始终如一地考虑所有现有结果。还得出了一种相关函数的新型有限尺寸缩放行为以及新的异常维度及其相关的缩放定律。

Phase transitions and critical phenomena are among the most intriguing phenomena in nature and their renormalization-group theory is one of the greatest achievements of theoretical physics. However, the predictions of the theory above an upper critical dimension $d_c$ seriously disagree with reality. In addition to its fundamental significance, the problem is also of practical importance because both complex systems with spatial or temporal long-range interactions and quantum phase transitions can substantially lower $d_c$. The extant scenarios built on a dangerous irrelevant variable (DIV) to resolve the problem introduce two sets of critical exponents and even two sets of scaling laws whose origin is obscure. Here, we consider the DIV from a different perspective and clearly unveil the origin of the two sets of exponents and hence the intrinsic inconsistency in those scenarios. We then develop an effective-dimension theory in which critical fluctuations and system volume are fixed at an effective dimension by the DIV. This enables us to account for all the extant results consistently. A novel asymptotic finite-size scaling behavior for a correlation function together with a new anomalous dimension and its associated scaling law is also derived.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源