论文标题
记忆的关键现象理论
Theory of Critical Phenomena with Memory
论文作者
论文摘要
记忆是复杂系统的普遍特征,关键现象是本质上最有趣的现象之一。在这里,我们提出了一个具有内存的Ising模型,并开发了具有复杂系统记忆的临界现象的相应理论,并发现了一系列令人惊讶的新颖结果。我们表明,直接包含势力衰减的长期时间相互作用的幼稚理论,即使在临界临界范围的上部和下方之下,也违反了所有空间维度的高度标准定律。这既需要对动力学的哈密顿人的必要意见,而不是仅仅专注于相应的动态拉格朗日式的通常做法,以及导致适当的理论的转换,在这种理论中,时空和时间隔离,从而导致有效的空间维度,从而使有效的空间尺寸重新确定了降解法。该理论产生了一组新型的均值关键指数,这些指数与通常的兰道(Landau)以及新的普遍性类别不同。这些指数通过在两个空间维度和三个空间维度的内存模拟的数值模拟来验证。
Memory is a ubiquitous characteristic of complex systems and critical phenomena are one of the most intriguing phenomena in nature. Here, we propose an Ising model with memory and develop a corresponding theory of critical phenomena with memory for complex systems and discovered a series of surprising novel results. We show that a naive theory of a usual Hamiltonian with a direct inclusion of a power-law decaying long-range temporal interaction violates radically a hyperscaling law for all spatial dimensions even at and below the upper critical dimension. This entails both indispensable consideration of the Hamiltonian for dynamics, rather than the usual practice of just focusing on the corresponding dynamic Lagrangian alone, and transformations that result in a correct theory in which space and time are inextricably interwoven, leading to an effective spatial dimension that repairs the hyperscaling law. The theory gives rise to a set of novel mean-field critical exponents, which are different from the usual Landau ones, as well as new universality classes. These exponents are verified by numerical simulations of the Ising model with memory in two and three spatial dimensions.