论文标题

自动识别化学部分

Automatic Identification of Chemical Moieties

论文作者

Lederer, Jonas, Gastegger, Michael, Schütt, Kristof T., Kampffmeyer, Michael, Müller, Klaus-Robert, Unke, Oliver T.

论文摘要

近年来,使用机器学习方法对量子机械可观察物的预测变得越来越流行。通过构建原子表示,通知神经网络(MPNN)可以从中预测感兴趣的属性来解决此任务。在这里,我们介绍了一种从这些表示形式中自动识别化学部分(分子构建块)的方法,从而实现了超出财产预测的各种应用,否则这些应用程序依赖于专家知识。所需的表示可以由经过预定的MPNN提供,也可以仅使用结构信息从头开始学习。除了分子指纹的数据驱动设计外,我们的方法的多功能性可以通过在化学数据库中选择代表性条目,自动构造粗粒力场以及反应坐标的鉴定来证明我们的方法的多功能性。

In recent years, the prediction of quantum mechanical observables with machine learning methods has become increasingly popular. Message-passing neural networks (MPNNs) solve this task by constructing atomic representations, from which the properties of interest are predicted. Here, we introduce a method to automatically identify chemical moieties (molecular building blocks) from such representations, enabling a variety of applications beyond property prediction, which otherwise rely on expert knowledge. The required representation can either be provided by a pretrained MPNN, or learned from scratch using only structural information. Beyond the data-driven design of molecular fingerprints, the versatility of our approach is demonstrated by enabling the selection of representative entries in chemical databases, the automatic construction of coarse-grained force fields, as well as the identification of reaction coordinates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源