论文标题
通过非稳定重置的跑步粒子的首次播放时间
First-passage time of run-and-tumble particles with non-instantaneous resetting
论文作者
论文摘要
我们在一个空间维度上研究单个运行和滚落粒子(RTP)的第一通道时间的统计数据,无论有无重置,都以$ l> 0 $的固定目标。首先,我们计算自由RTP的首次时间分配,而无需重置或限制潜力,但平均是从任意分布$ p(x)$中提取的初始位置。最近的实验使用了一种非传真的重置方案,该方案促使我们特别研究了$ p(x)$的情况,即在存在谐波陷阱的情况下对RTP的固定非螺栓分布。此分布$ p(x)$的特征是参数$ν> 0 $,取决于RTP动力学的显微镜参数。我们表明,根据参数$ν$,从此初始分布中得出的免费RTP的首次时间分布会产生有趣的奇异行为。然后,我们通过在谐波陷阱的情况下通过RTP的热松弛模仿重置。重置会导致有限的平均第一学期时间(MFPT),我们将其研究为重置率的函数,用于不同值的参数$ν$和$ b = l/c $,其中$ c $是初始分发$ p(x)$的最初分布的正确边缘。在RTP动力学的扩散极限中,我们在$(b,ν)$平面中找到了丰富的相图,并具有有趣的重新输入相变。远离扩散极限,对于完整的RTP动力学而出现了定性相似的丰富行为。
We study the statistics of the first-passage time of a single run and tumble particle (RTP) in one spatial dimension, with or without resetting, to a fixed target located at $L>0$. First, we compute the first-passage time distribution of a free RTP, without resetting nor in a confining potential, but averaged over the initial position drawn from an arbitrary distribution $p(x)$. Recent experiments used a non-instantaneous resetting protocol that motivated us to study in particular the case where $p(x)$ corresponds to the stationary non-Boltzmann distribution of an RTP in the presence of a harmonic trap. This distribution $p(x)$ is characterized by a parameter $ν>0$, which depends on the microscopic parameters of the RTP dynamics. We show that the first-passage time distribution of the free RTP, drawn from this initial distribution, develops interesting singular behaviours, depending on the parameter $ν$. We then switch on resetting, mimicked by thermal relaxation of the RTP in the presence of a harmonic trap. Resetting leads to a finite mean first-passage time (MFPT) and we study this as a function of the resetting rate for different values of the parameters $ν$ and $b = L/c$ where $c$ is the right edge of the initial distribution $p(x)$. In the diffusive limit of the RTP dynamics, we find a rich phase diagram in the $(b,ν)$ plane, with an interesting re-entrance phase transition. Away from the diffusive limit, qualitatively similar rich behaviours emerge for the full RTP dynamics.