论文标题
冈本空间中第六次Parelevé方程的全球渐近学
Global asymptotics of the sixth Painlevé equation in Okamoto's space
论文作者
论文摘要
随着自变量接近零,我们研究了第六次Parelevé方程的初始值空间中解决方案的动力学。我们的主要结果描述了驱虫剂集,表明一般解决方案的极线和零是无限的,并且每个溶液的复杂极限集存在并且是紧凑且连接的。
We study dynamics of solutions in the initial value space of the sixth Painlevé equation as the independent variable approaches zero. Our main results describe the repeller set, show that the number of poles and zeroes of general solutions is unbounded, and that the complex limit set of each solution exists and is compact and connected.