论文标题
部分可观测时空混沌系统的无模型预测
Quillen-type bundle and geometric prequantization on moduli space of the Seiberg-Witten equations on product of Riemann surfaces
论文作者
论文摘要
我们在$σ\ timesσ$上显示了在塞伯格(Seiberg)方程的模量空间上存在符号结构的存在,其中$σ$是面向面向的riemann表面。为了进行模量空间,我们在其上构造了一个Quillen型行列式线束,并显示其曲率与符号形式成正比。
We show the existence of a symplectic structure on the moduli space of the Seiberg-Witten equations on $Σ\times Σ$ where $Σ$ is a compact oriented Riemann surface. To prequantize the moduli space, we construct a Quillen-type determinant line bundle on it and show its curvature is proportional to the symplectic form.