论文标题

实体驱动的事实意识到生物医学文学的抽象摘要

Entity-driven Fact-aware Abstractive Summarization of Biomedical Literature

论文作者

Alambo, Amanuel, Banerjee, Tanvi, Thirunarayan, Krishnaprasad, Raymer, Michael

论文摘要

作为每年发表的大量科学文章的一部分,生物医学文献的出版率一直在增加。因此,在利用和总结大量生物医学研究文章方面已经付出了巨大的努力。尽管已经对不同域中的抽象性摘要进行了广泛的研究,但基于变压器的编码器模型已经进行了广泛研究,但它们的主要局限性仍然是实体幻觉(这种现象构成与源文章中或源文章中无关或存在的实体)和事实不一致的现象。在生物医学环境中,这个问题加剧了,其中指定的实体及其语义(可以通过知识库捕获)构成文章的本质。在生物医学文章摘要文献中尚未研究与指定实体有关的指导性实体的命名实体和事实来指导抽象性摘要。在本文中,我们提出了一个由实体驱动的事实感知的框架,用于训练基于端到端变压器的编码器模型,用于生物医学文章的抽象性摘要。我们称之为拟议方法,其构件是基于变压器的模型,EFA,实体驱动的事实感知的抽象摘要。我们使用五个最先进的变压器模型(两个专门设计用于长期文档摘要)进行实验,并证明,将知识注入这些模型的培训/推理阶段,使模型能够在实体级别的事实准确性,N-级别的新颖性,以及在对效果上的符合性,n-级别的新颖性,以及在对效果相等的范围上,在实体级别的效果范围内实现符合符号的标准源环境的性能明显取得更好的性能。提出的方法在ICD-11-Summ-1000和PubMed-50K上进行评估。

As part of the large number of scientific articles being published every year, the publication rate of biomedical literature has been increasing. Consequently, there has been considerable effort to harness and summarize the massive amount of biomedical research articles. While transformer-based encoder-decoder models in a vanilla source document-to-summary setting have been extensively studied for abstractive summarization in different domains, their major limitations continue to be entity hallucination (a phenomenon where generated summaries constitute entities not related to or present in source article(s)) and factual inconsistency. This problem is exacerbated in a biomedical setting where named entities and their semantics (which can be captured through a knowledge base) constitute the essence of an article. The use of named entities and facts mined from background knowledge bases pertaining to the named entities to guide abstractive summarization has not been studied in biomedical article summarization literature. In this paper, we propose an entity-driven fact-aware framework for training end-to-end transformer-based encoder-decoder models for abstractive summarization of biomedical articles. We call the proposed approach, whose building block is a transformer-based model, EFAS, Entity-driven Fact-aware Abstractive Summarization. We conduct experiments using five state-of-the-art transformer-based models (two of which are specifically designed for long document summarization) and demonstrate that injecting knowledge into the training/inference phase of these models enables the models to achieve significantly better performance than the standard source document-to-summary setting in terms of entity-level factual accuracy, N-gram novelty, and semantic equivalence while performing comparably on ROUGE metrics. The proposed approach is evaluated on ICD-11-Summ-1000, and PubMed-50k.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源