论文标题

使用超声成像的深度学习模型用于燃烧深度分类

A deep learning model for burn depth classification using ultrasound imaging

论文作者

Lee, Sangrock, Rahul, Lukan, James, Boyko, Tatiana, Zelenova, Kateryna, Makled, Basiel, Parsey, Conner, Norfleet, Jack, De, Suvranu

论文摘要

以足够的精度识别燃烧深度是一个具有挑战性的问题。本文提出了一个深度卷积神经网络,以基于燃烧的皮肤的组织形态的改变,以表现为超声图像中的纹理模式。该网络首先使用编码器架构结构来学习未燃烧的皮肤图像的低维流形,该体系结构从燃烧的皮肤的超声图像中重建它。然后对编码器进行重新训练以对燃烧深度进行分类。编码器 - 模型网络是使用由未燃烧和燃烧的离体猪皮肤样品组成的B模式超声图像组成的数据集训练的。分类器是使用燃烧的原位皮肤样品的B模式图像开发的,这些原位皮肤样品是从新鲜安乐死的后猪中获得的。从20倍交叉验证获得的性能指标表明,该模型可以识别出深部厚度燃烧,这是最难在临床上诊断的最难诊断,精度为99%,灵敏度为98%和100%的特异性。对于接收器的操作特性和Precision-Recall曲线,分别在0.99和0.95的曲线值下,分类器的诊断准确性进一步说明了。事后解释表明,分类器激活B模式图像中的歧视性纹理特征以进行燃烧分类。提出的模型具有临床实用性的潜力,可以使用广泛可用的临床成像装置来协助燃烧深度的临床评估。

Identification of burn depth with sufficient accuracy is a challenging problem. This paper presents a deep convolutional neural network to classify burn depth based on altered tissue morphology of burned skin manifested as texture patterns in the ultrasound images. The network first learns a low-dimensional manifold of the unburned skin images using an encoder-decoder architecture that reconstructs it from ultrasound images of burned skin. The encoder is then re-trained to classify burn depths. The encoder-decoder network is trained using a dataset comprised of B-mode ultrasound images of unburned and burned ex vivo porcine skin samples. The classifier is developed using B-mode images of burned in situ skin samples obtained from freshly euthanized postmortem pigs. The performance metrics obtained from 20-fold cross-validation show that the model can identify deep-partial thickness burns, which is the most difficult to diagnose clinically, with 99% accuracy, 98% sensitivity, and 100% specificity. The diagnostic accuracy of the classifier is further illustrated by the high area under the curve values of 0.99 and 0.95, respectively, for the receiver operating characteristic and precision-recall curves. A post hoc explanation indicates that the classifier activates the discriminative textural features in the B-mode images for burn classification. The proposed model has the potential for clinical utility in assisting the clinical assessment of burn depths using a widely available clinical imaging device.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源