论文标题

半监督的图形神经网络,用于堆叠噪声

Semi-supervised Graph Neural Networks for Pileup Noise Removal

论文作者

Li, Tianchun, Liu, Shikun, Feng, Yongbin, Paspalaki, Garyfallia, Tran, Nhan, Liu, Miaoyuan, Li, Pan

论文摘要

CERN大型强子对撞机的高瞬时发光度导致在同一或附近的束横梁(堆积)中产生多个质子 - 蛋白质相互作用。先进的堆积缓解算法旨在从堆积颗粒中消除这种噪音,并提高至关重要的物理可观察物的性能。这项研究通过鉴定堆积物产生的个体颗粒来实现半监督的图形神经网络,以去除粒子级的堆积噪声。首先对具有已知标签的带电粒子进行了图形神经网络,可以从数据或模拟的检测器测量中获得,然后在缺少此类标签的中性粒子上推断出。这种半监督的方法不取决于模拟中的地面真相信息,因此使我们能够直接对实验数据进行培训。发现这种方法的性能始终比广泛使用的域算法要好,并且与使用模拟真实信息的完全监督培训相当。该研究是将半监督的学习技术应用于减轻堆积的首次尝试,并打开了完全数据驱动的机器学习堆积缓解研究的新方向。

The high instantaneous luminosity of the CERN Large Hadron Collider leads to multiple proton-proton interactions in the same or nearby bunch crossings (pileup). Advanced pileup mitigation algorithms are designed to remove this noise from pileup particles and improve the performance of crucial physics observables. This study implements a semi-supervised graph neural network for particle-level pileup noise removal, by identifying individual particles produced from pileup. The graph neural network is firstly trained on charged particles with known labels, which can be obtained from detector measurements on data or simulation, and then inferred on neutral particles for which such labels are missing. This semi-supervised approach does not depend on the ground truth information from simulation and thus allows us to perform training directly on experimental data. The performance of this approach is found to be consistently better than widely-used domain algorithms and comparable to the fully-supervised training using simulation truth information. The study serves as the first attempt at applying semi-supervised learning techniques to pileup mitigation, and opens up a new direction of fully data-driven machine learning pileup mitigation studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源