论文标题

贝叶斯光子加速器,用于节能和噪声强大的神经处理

Bayesian Photonic Accelerators for Energy Efficient and Noise Robust Neural Processing

论文作者

Sarantoglou, George, Bogris, Adonis, Mesaritakis, Charis, Theodoridis, Sergios

论文摘要

人工神经网络是受大脑启发的有效计算平台。这样的平台可以解决从图像处理到语言翻译等广泛的现实任务。硅光子综合芯片(图片)通过在马切德干涉仪中采用连贯的相互作用,是有希望的加速器,可提供创纪录的低功耗和超快速矩阵乘法。然而,由于制造错误和串扰效应抑制了高密度实施的发展,因此这种光子加速器遭受了相位不确定性。在这项工作中,我们为这种光子加速器提供了一个贝叶斯学习框架。除了常规的对数类样式优化路径外,还得出了两个新颖的训练方案,即正规版本和完全贝叶斯学习方案。它们被应用于具有512个相变的光子神经网络,该网络针对MNIST数据集。当新方案与提供被动偏移的预先特征阶段相结合时,能够显着将PIC的运行能力降低到70%以上,而分类精度仅略有损失。除了这种能量降低外,完整的贝叶斯方案还返回有关相变敏感性的信息。该信息用于使31%的相执行器取消活化,从而显着简化了驾驶系统。

Artificial neural networks are efficient computing platforms inspired by the brain. Such platforms can tackle a vast area of real-life tasks ranging from image processing to language translation. Silicon photonic integrated chips (PICs), by employing coherent interactions in Mach-Zehnder interferometers, are promising accelerators offering record low power consumption and ultra-fast matrix multiplication. Such photonic accelerators, however, suffer from phase uncertainty due to fabrication errors and crosstalk effects that inhibit the development of high-density implementations. In this work, we present a Bayesian learning framework for such photonic accelerators. In addition to the conventional log-likelihood optimization path, two novel training schemes are derived, namely a regularized version and a fully Bayesian learning scheme. They are applied on a photonic neural network with 512 phase shifters targeting the MNIST dataset. The new schemes, when combined with a pre-characterization stage that provides the passive offsets, are able to dramatically decrease the operational power of the PIC beyond 70%, with just a slight loss in classification accuracy. The full Bayesian scheme, apart from this energy reduction, returns information with respect to the sensitivity of the phase shifters. This information is used to de-activate 31% of the phase actuators and, thus, significantly simplify the driving system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源