论文标题

用于大量最大重量独立集问题的元启发式算法

A Metaheuristic Algorithm for Large Maximum Weight Independent Set Problems

论文作者

Dong, Yuanyuan, Goldberg, Andrew V., Noe, Alexander, Parotsidis, Nikos, Resende, Mauricio G. C., Spaen, Quico

论文摘要

由现实世界中的车辆路由应用激励,我们考虑了最大重量独立集问题:给定节点加权图,找到一组独立的(相互非调用)节点,其节点 - 重量总和是最大的。该应用程序中播出的一些图形很大,有数亿个节点和数亿个边缘。为了解决这种大小的实例,我们开发了一种新的本地搜索算法,这是贪婪的随机自适应搜索(GRASP)框架中的元疗法。我们称之为metamis的算法使用了比文献中先前所描述的更广泛的简单本地搜索操作。我们介绍了使这些操作有效的数据结构。引入了一种新的路径链接变体,以逃避本地的Optima,因此是一种新的交替增强路径本地搜索移动,可改善算法性能。我们将算法的实现与公共基准集上的最先进的代码进行了比较,其中包括一些具有数亿个顶点的大型实例。一般而言,我们的算法在大型车辆路由实例上均超过了该公开可用的代码。我们希望我们的结果将带来更好的MWIS算法。

Motivated by a real-world vehicle routing application, we consider the maximum-weight independent set problem: Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum. Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges. To solve instances of this size, we develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search (GRASP) framework. This algorithm, which we call METAMIS, uses a wider range of simple local search operations than previously described in the literature. We introduce data structures that make these operations efficient. A new variant of path-relinking is introduced to escape local optima and so is a new alternating augmenting-path local search move that improves algorithm performance. We compare an implementation of our algorithm with a state-of-the-art openly available code on public benchmark sets, including some large instances with hundreds of millions of vertices. Our algorithm is, in general, competitive and outperforms this openly available code on large vehicle routing instances. We hope that our results will lead to even better MWIS algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源