论文标题

变压器惯性摆姿势:从稀疏IMUS与同时地形一代的实时人类运动重建

Transformer Inertial Poser: Real-time Human Motion Reconstruction from Sparse IMUs with Simultaneous Terrain Generation

论文作者

Jiang, Yifeng, Ye, Yuting, Gopinath, Deepak, Won, Jungdam, Winkler, Alexander W., Liu, C. Karen

论文摘要

一组稀疏(例如六个)可穿戴的IMU提供的实时人类运动重建提供了一种非侵入性和经济的运动捕获方法。没有直接从IMU中获取位置信息的能力,最近的工作采用了数据驱动的方法,这些方法利用大型人类运动数据集解决了这一不确定的问题。尽管如此,挑战仍然存在,例如时间一致性,全球和联合动议的漂移以及各种地形运动类型的各种覆盖范围。我们提出了一种同时估计全身运动的新方法,并实时从六个IMU传感器中产生合理的访问地形。我们的方法结合了1。条件变压器解码器模型通过明确的推理预测历史,2。一个简单但一般的学习目标,名为“固定身体点”(SBPS),可以通过变压器模型稳定地预测,并通过分析例程来稳定地预测,并通过分析程序来纠正无algorith and no no no no no no no no and prodies of Algorith sbp。运动估计。我们对综合和真实IMU数据以及实时实时演示进行了广泛的评估框架,并显示出优于强基线方法的性能。

Real-time human motion reconstruction from a sparse set of (e.g. six) wearable IMUs provides a non-intrusive and economic approach to motion capture. Without the ability to acquire position information directly from IMUs, recent works took data-driven approaches that utilize large human motion datasets to tackle this under-determined problem. Still, challenges remain such as temporal consistency, drifting of global and joint motions, and diverse coverage of motion types on various terrains. We propose a novel method to simultaneously estimate full-body motion and generate plausible visited terrain from only six IMU sensors in real-time. Our method incorporates 1. a conditional Transformer decoder model giving consistent predictions by explicitly reasoning prediction history, 2. a simple yet general learning target named "stationary body points" (SBPs) which can be stably predicted by the Transformer model and utilized by analytical routines to correct joint and global drifting, and 3. an algorithm to generate regularized terrain height maps from noisy SBP predictions which can in turn correct noisy global motion estimation. We evaluate our framework extensively on synthesized and real IMU data, and with real-time live demos, and show superior performance over strong baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源