论文标题
Oakink:一个大规模的知识存储库,用于了解手动相互作用
OakInk: A Large-scale Knowledge Repository for Understanding Hand-Object Interaction
论文作者
论文摘要
了解人类如何操纵对象需要机器从两个角度获取知识:一个用于理解对象负担,另一个用于根据负担能力学习人类的互动。即使这两个知识库至关重要,我们发现当前的数据库缺乏对它们的全面认识。在这项工作中,我们提出了一个多模式和丰富的知识存储库Oakink,以实现对手动相互作用的视觉和认知理解。我们开始收集1,800个常见的家庭对象,并注释他们的能力来构建第一个知识库:橡木。鉴于负担能力,我们记录了橡木中与100个选定对象的丰富人类互动。最后,我们通过一种新颖的方法将100个记录的对象上的相互作用转移到其虚拟对应物上:Tink。记录和转移的手对象相互作用构成了第二个知识库:墨水。结果,Oakink包含50,000个不同的负担能力和意图的手动相互作用。我们根据姿势估计和掌握生成任务进行基准测试。此外,我们提出了Oakink:基于意图的互动产生和移交生成的两个实际应用。我们的数据集和源代码可在https://github.com/lixiny/oakink上公开获取。
Learning how humans manipulate objects requires machines to acquire knowledge from two perspectives: one for understanding object affordances and the other for learning human's interactions based on the affordances. Even though these two knowledge bases are crucial, we find that current databases lack a comprehensive awareness of them. In this work, we propose a multi-modal and rich-annotated knowledge repository, OakInk, for visual and cognitive understanding of hand-object interactions. We start to collect 1,800 common household objects and annotate their affordances to construct the first knowledge base: Oak. Given the affordance, we record rich human interactions with 100 selected objects in Oak. Finally, we transfer the interactions on the 100 recorded objects to their virtual counterparts through a novel method: Tink. The recorded and transferred hand-object interactions constitute the second knowledge base: Ink. As a result, OakInk contains 50,000 distinct affordance-aware and intent-oriented hand-object interactions. We benchmark OakInk on pose estimation and grasp generation tasks. Moreover, we propose two practical applications of OakInk: intent-based interaction generation and handover generation. Our datasets and source code are publicly available at https://github.com/lixiny/OakInk.