论文标题
在逼真的量子硬件中的表面代码的性能
Performance of surface codes in realistic quantum hardware
论文作者
论文摘要
通常基于以下假设研究表面代码:构成表面代码晶格的每个量子位均遭受独立且分布相同的噪声(i.i.d.)。但是,个人放松($ t_1 $)和DEPHASING($ t_2 $)的实际基准测试了最先进的量子处理器的组成量值,最近表明,每个特定量子的折磨效应实际上都在强度上有所不同。结果,在本文中,我们介绍了独立的非相同分布式(i.ni.d)噪声模型,这是一种逆变模型,该模型解释了Qubits的doCoherence参数的非均匀行为。此外,我们使用i.ni.d模型来研究它如何影响特定的量子误差校正(QEC)代码的性能,称为平面代码。为此,我们采用了来自四个最先进的超导处理器的数据:IBMQ \ _BROOKLYN,IBM \ _WASHINGTON,ZUCHONGZHI和RIGETTI ASPENI ASPEN-M-1。我们的结果表明I.I.D.噪声假设高估了表面代码的性能,当售i.ni.d的代码伪阈值时,噪声代码的性能最高为95美元\%$ $的性能下降。噪声模型。此外,我们考虑并描述了两种方法,以增强i.ni.d的平面代码的性能。噪音。第一种方法涉及常规最小重量完美匹配(MWPM)解码器的所谓重新加权过程,而第二个解码器则利用了表面代码晶格中代码性能和量子安排之间存在的关系。通过前两种方法的组合得出的最佳量子配置可以产生平面代码伪阈值值,该值高达$ 650 \%$ $比I.Ni.D下的传统MWPM解码器高。噪音。
Surface codes are generally studied based on the assumption that each of the qubits that make up the surface code lattice suffers noise that is independent and identically distributed (i.i.d.). However, real benchmarks of the individual relaxation ($T_1$) and dephasing ($T_2$) times of the constituent qubits of state-of-the-art quantum processors have recently shown that the decoherence effects suffered by each particular qubit actually vary in intensity. In consequence, in this article we introduce the independent non-identically distributed (i.ni.d.) noise model, a decoherence model that accounts for the non-uniform behaviour of the docoherence parameters of qubits. Additionally, we use the i.ni.d model to study how it affects the performance of a specific family of Quantum Error Correction (QEC) codes known as planar codes. For this purpose we employ data from four state-of-the-art superconducting processors: ibmq\_brooklyn, ibm\_washington, Zuchongzhi and Rigetti Aspen-M-1. Our results show that the i.i.d. noise assumption overestimates the performance of surface codes, which can suffer up to $95\%$ performance decrements in terms of the code pseudo-threshold when they are subjected to the i.ni.d. noise model. Furthermore, we consider and describe two methods which enhance the performance of planar codes under i.ni.d. noise. The first method involves a so-called re-weighting process of the conventional minimum weight perfect matching (MWPM) decoder, while the second one exploits the relationship that exists between code performance and qubit arrangement in the surface code lattice. The optimum qubit configuration derived through the combination of the previous two methods can yield planar code pseudo-threshold values that are up to $650\%$ higher than for the traditional MWPM decoder under i.ni.d. noise.