论文标题
$ w $ operators中的$β$形式的高斯遗产矩阵模型中的可整合性
Superintegrability in $β$-deformed Gaussian Hermitian matrix model from $W$-operators
论文作者
论文摘要
本文致力于可巩固性的现象。这种现象体现在特殊点及其各种概括的相同特征的字符平均值的存在中。在本文中,我们开发了一种从Virasoro约束和$ W $代表的第一原理证明此类公式的方法。我们将其应用于证明千斤顶函数平均的公式 - 适合$β$形式的Hermitian高斯矩阵模型的字符类似物。我们还绘制了来自Calogero-Ruijsenaars Hamiltonians的$ W $运营商的构建。
This paper is devoted to the phenomenon of superintegrability. This phenomenon is manifested in the existence of a formula for character averages, expressed through the same characters at special points and of its various generalization. In this paper we develop a method of proving such formulas from first principle from Virasoro constraints and $W$-representation. We apply it to prove the formula for the Jack functions averages - appropriate analogue of characters for the $β$-deformed Hermitian Gaussian matrix model. We also sketch the construction of $W$-operators from Calogero-Ruijsenaars Hamiltonians.