论文标题

$ m $ isometries的Aluthge和平均变换

The Aluthge and the mean transforms of $m$-isometries

论文作者

Chabbabi, Fadil, Ostermann, Maëva

论文摘要

令$ t \在b(h)$中为Hilbert Space $ H $上的有界线性运算符,令$ t = V | t | $为$ t $的极地分解,让$λ\在[0,1] $中。 $λ$ -Arthge变换$Δ_λ(t)$和平均值转换$ m(t)$分别由:\ [δ_λ(t):= | = | t | t | t |^λv| t | t |^|^{1-λ} \; \; \; \ text {and} \; \; m(t):= \ frac12(| t | v+v | t |)。\ \]在本文中,我们使用了几个加权移动运算符的示例来证明Aluthge和Mean Transforms不能在任何方向上保留$ m $ ISOMETRIES的类别。

Let $T\in B(H)$ be a bounded linear operator on a Hilbert space $H$, let $T = V|T|$ be its polar decomposition of $T$ and let $λ\in [0,1]$. The $λ$-Aluthge transform $Δ_λ(T)$ and the mean transforms $M(T)$ are defined respectively by: \[Δ_λ(T):=|T|^λV|T|^{1-λ} \;\; \text{and} \;\; M(T):=\frac12(|T|V+V|T|).\] In this paper, we use several examples of weighted shift operators to prove that the Aluthge and mean transforms do not preserve the class of $m-$isometries in any directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源